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Genetic influences on the determination of human fat mass
are profound and powerful, a statement that does not conflict
with the obvious influence of environmental factors that drive
recent changes in the prevalence of obesity. The assertion of
the importance of genetic factors has, until recently, largely
been based on twin and adoption studies. However, in the last
6 yr, a number of human genes have been identified in which
major missense or nonsense mutations are sufficient in them-
selves to result in severe early-onset obesity, usually associ-
ated with disruption of normal appetite control mechanisms.

Progress in the identification of more common, subtler ge-
netic variants that influence fat mass in larger numbers of
people has been slower, but discernible. Human genetics will
continue to make an invaluable contribution to the study of
human obesity by identifying critical molecular components
of the human energy balance regulatory systems, pointing the
way toward more targeted and effective therapies and assist-
ing the prediction of individual responses to environmental
manipulations. (Endocrinology 144: 3757–3764, 2003)

THERE IS NOW widespread recognition that the con-
tinuing increase in the prevalence of obesity seen in

many countries is likely to have major adverse effects on
public health (1). In the search for the environmental drivers
of this epidemiological phenomenon, there is some danger
that we may overlook the critical importance of inherited
factors in the determination of interindividual differences in
fat mass. The identification of such factors is of great clinical,
as well as theoretical, importance for a number of reasons.
Firstly, genetic influences are likely to be particularly pow-
erful in people with severe and early-onset obesity, the group
most likely to suffer adverse clinical consequences. Secondly,
the use of genetics to identify critical molecular components
of the human control system for energy homeostasis may
help to target safe and specific drug development. Finally, it
is known that diet and exercise programs, while frequently
effective in inducing weight loss, rarely maintain this. It is
very likely that the genetic makeup of an individual may
influence their response to particular measures. Ultimately,
it should be possible to identify genetic subgroups of subjects
who might be particularly responsive or resistant to specific
environmental modulations.

Evidence for the Heritability of Human Fat Mass

Traditionally, the most favored model for separation of the
genetic component of phenotypic variance between individ-
uals (heritability) is based on studies of twins, as monozy-
gotic cotwins share 100% of their genes and dizygotes 50%
on average. Twin studies suggest a heritability of fat mass of
between 40 and 70% with a concordance of 0.7–0.9 between
monozygotic twins compared with 0.35–0.45 between dizy-
gotic twins (2, 3). Correlation of monozygotic twins reared
apart is virtually a direct estimate of the heritability (al-

though monozygotic twins do share the intrauterine envi-
ronment, which may contribute to lasting differences in body
mass in later life). Estimates vary from 40–70%, depending
on age of separation of twins and the length of follow-up
(reviewed in Ref. 4).

Complete adoption studies are useful in separating the
common environmental effects because adoptive parents
and their adoptive offspring share only environmental
sources of variance, whereas the adoptees and their biolog-
ical parents share only genetic sources of variance. One of the
largest series, based on over 5000 subjects from the Danish
adoption register that contains complete and detailed infor-
mation on the biological parents, showed a strong relation-
ship between the body mass index (BMI) of adoptees and
biological parents across the whole range of body fatness but
none when compared with the adoptive parents (5). The
Danish group have also shown a close correlation between
BMI of adoptees and their biological full siblings who were
reared separately by the biological parents of the adoptees,
and a similar, but weaker relationship with half-siblings (6).

This is not to say that environmental forces are unimpor-
tant. The progressive increase in mean BMI in the United
States since records began is very likely to be driven by a
combination of increased food availability and palatability
and decreased physical activity. However, this needs to be
put in perspective. Between 1991 and 2000, the mean weight
of an American adult increased by about 4 kg. However,
American adults vary in weight between 50 and 300 kg,
suggesting hugely differing susceptibilities to weight gain
between individuals within the same environment (7).

We already have an excellent precedent for a phenotype
that is well accepted as being largely genetically determined,
yet shows secular changes with time, presumably based on
changing environmental influences. In humans, height is
highly heritable (75–90%) (8–10); indeed, clinically we use
mid-parental height to predict the ultimate stature of a child.

Abbreviations: BMI, Body mass index; MC4R, melanocortin 4 receptor;
PC, prohormone convertase; POMC, proopiomelanocortin; SDS, sd score.
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However, young adults in most Westernized countries have
shown a marked and progressive increase in height over the
past century, presumably as a result of improved nutrition
in prenatal and early postnatal life. It is interesting that we
have no difficulty in accepting that height is largely genet-
ically determined, yet in the face of a highly analogous data
set for weight, there is sometimes considerable reluctance to
accept the profound influence of heredity.

Identification of Human Obesity Genes

This review will largely focus on a group of recently de-
scribed human monogenic obesities resulting from muta-
tions in critical molecular elements of the homeostatic control
mechanism regulating energy balance. Before dealing with
these, we will briefly touch on recent advances in discovery
of the genes responsible for complex pleiotropic syndromic
obesity, and we will finish with some short comments on
polygenic obesity.

Pleiotropic syndromes

Pleiotropic syndromes refer to complex and often long-
described clinical syndromes in which obesity is only one of

a constellation of physical and developmental anomalies (e.g.
Prader Willi, Bardet-Biedl syndromes). There are about 30
Mendelian disorders with obesity reported as an omnipres-
ent or variable clinical feature. Positional genetic strategies
have led to the recent identification of several different caus-
ative genetic defects underlying such syndromes (Table 1). In
most cases, the defective gene product is an intracellular
protein that is expressed throughout the body and is of
unknown function. As yet, the mechanistic link between such
defective gene products and dysregulation of energy balance
is obscure.

Monogenic Human Obesity Syndromes

The field of human obesity has benefited enormously from
the recent advances in rodent genetics (11). The 1990s
brought the positional identification of a series of murine
obesity genes including leptin (12), the leptin receptor (13),
carboxypeptidase E (14) and agouti (15), and targeted genetic
manipulation, established the critical regulatory role of mol-
ecules such as the melanocortin 4 receptor (MC4R) (16) and
agouti-related protein (17). Many of these discoveries were
rapidly followed by the finding of mutations in homologous

TABLE 1. Pleiotropic obesity syndromes

Syndrome Additional clinical features Locus Gene Refs.

Autosomal dominant
Prader-Willi syndrome (PWS)a Hypotonia, mental retardation, short stature, and

hypogonadism
15q11.2-q12 Unknown 60–64

Albright hereditary osteodystrophy
(AHO)b

Short stature, skeletal defects, and impaired olfaction 20q13.2 GNAS1 65,66

Fragile X syndrome Mental retardation, macro-orchidism, and high-pitched jocular
speech

Xq27.3 FMR1 67

Ulnar-mammary syndrome Ulnar defects, delayed puberty, and hypoplastic nipples 12q24.1 TBX3 68

Autosomal recessive
Bardet-Biedl syndrome Mental retardation, dysphormic extremities, retinal dystrophy

or pigmentary retinopathy, hypogonadism, and structural
abnormalities of the kidney or functional renal impairment

11q13
(BBS1)

BBS1 69

16q21
(BBS2)

BBS2 70

3p13
(BBS3)

Unknown

15q22
(BBS4)

BBS4 71

2q31
(BBS5)

Unknown

20p12
(BBS6)

BBS6 (MKKS) 72–74

Alstrom syndrome Retinal dystrophy, neurosensory deafness, and diabetes 2p13 ALMS1 75,76
Cohen syndrome Prominent central incisors, opthalmopathy, and microcephaly 8q22 Unknown 77

X-linked
Borjeson-Forssman-Lehmann

syndrome
Mental retardation, hypogonadism, large ears Xq26 PHF6 78

Mehmo syndrome Mental retardation, epilepsy, hypogonadism, and
microcephaly

Xp22.13 Unknown no. 79,80

Simpson-Golabi-Behmel, type 2 Craniofacial defects, and skeletal and visceral abnormalities Xp22 Unknown 81
Wilson-Turner syndrome Mental retardation, tapering fingers, and gynaecomastia Xp21.2 Unknown 82

In each column, references for the description of the clinical syndrome, identification of putative loci, and specific genes are indicated. Where
the responsible gene is unknown, studies examining the role of candidate genes contained within the relevant locus are referenced.

a Deletion of the paternal segment or loss of the entire paternal chromosome 15 with presence of two maternal homologs (uniparental maternal
disomy) leads to the phenotype of PWS due to the effects of imprinted genes.

b Maternal transmission of GNAS1 (Gs � subunit) mutations leads to AHO plus resistance to several hormones (e.g. PTH) that activate Gs
in their target tissues (pseudohypoparathyroidism type IA), whereas paternal transmission leads only to the AHO phenotype (pseudo-
pseudohypoparathyroidism).

c An X-linked mitochondrial disorder.
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genes or pathways causing human disease. Such mutations
tend to result in morbid obesity presenting in childhood
without the developmental pleiotropic features characteris-
tic of the recognized syndromes of childhood obesity, al-
though there are distinct and characteristic clinical, neuroen-
docrine, and biochemical features. Notably, they mostly
appear to have their most striking effects on energy intake.

Congenital leptin deficiency

Congenital leptin deficiency was the first of these mono-
genic syndromes to be described (18), and the clinical fea-
tures of this condition have now been reported in two UK
families of Pakistani origin (three affected individuals) and
one Turkish family (two living affected subjects) (19). We
have recently identified two further cases, one of whom is
unrelated to either of our original probands (our unpub-
lished data). Although the Pakistani families are not known
to be related over five generations, they all carry the same
frameshift mutation (�G133). This suggests either a founder
effect in that population or, more likely in our view, that this
G deletion, occurring as it does in a run of six guanines,
represents a hotspot (i.e. region in the genome where there
is a greater chance of DNA replication error, predisposing to
insertion or deletion mutations). High levels of consanguin-
ity, even after migration to developed countries, may be
sufficient to explain the apparently disproportionate muta-
tional prevalence among this ethnic group. The �G133 mu-
tation results in a truncated form of leptin that is misfolded
and not secreted (20). Obese subjects in the single consan-
guineous Turkish family with leptin deficiency are homozy-
gous for a missense mutation that appears to be associated
with low leptin levels, although the precise molecular mech-
anisms have not been studied (19).

The clinical phenotype of human congenital leptin defi-
ciency is very similar to that seen in the ob/ob mouse. Thus,
in common with the mouse, leptin-deficient humans have
early-onset obesity, increased food intake, hypogonado-
tropic hypogonadism, hyperinsulinaemia, defective function
of the hypothalamo-pituitary thyroidal axis, and defects in T
cell number and function (21–23). The T cell hyporespon-
siveness, which we recently demonstrated in two leptin-
deficient children, was profound and provokes questions
regarding susceptibility of such children to infectious dis-
ease. Parents from the UK families report more frequent and
severe respiratory tract infections in their affected than their
unaffected children. In the Turkish family, who live in a
remote area where medical care is not readily accessible,
there is a history of high early mortality in obese children
from that large kindred.

There are some phenotypes where the parallels between
human and mice are not as clear-cut. Thus, ob/ob mice are
stunted and have elevated corticosterone levels (24), neither of
which appears to be the case in humans. The contribution of
reduced energy expenditure to the obesity of the ob/ob mouse
is reasonably well established (25, 26); however, we were un-
able to detect any major reductions in resting or free-living
energy expenditure (22), although we were unable to examine
how such systems adapted to stressors such as cold.

Studies of the heterozygote members of the �G133 families

indicate that their leptin levels are lower than ethnically
matched control subjects, and this partial leptin deficiency is
associated with a mean fat mass 23% greater than predicted
by their height and weight (27). This is very similar to the
subtle phenotype seen in ob heterozygote mice (28).

Of the human monogenic obesity syndromes identified
thus far, leptin deficiency is unique in being amenable to
mechanism-based therapy. We have recently reported the
dramatically beneficial effects of daily sc injections of leptin
in three children (22) and are obtaining similar results in
another two (our unpublished data). These effects were seen
at a dose equivalent to 10% predicted serum leptin concen-
tration (0.01 mg/kg lean body weight) in contrast to the
supraphysiological doses (0.1–0.3 mg/kg body weight) re-
quired to induce weight loss in leptin-sufficient obesity (29).
In the most dramatic example of its effects, a 3-yr-old boy
who was severely disabled by gross obesity (42 kg) now
weighs 32 kg (75th centile for weight) after 48 months of
leptin therapy (Fig. 1).

Of particular note, the major effect of leptin was on ap-
petite with normalization of hyperphagia. Leptin therapy
reduced energy intake during an 18 MJ ad libitum test meal
by up to 84% (5 MJ ingested before treatment vs. 0.8 MJ post
treatment in the child with the greatest response). In contrast
to the dramatic effects of leptin on human energy intake, we
were unable to demonstrate a major effect of leptin on basal
metabolic rate or free-living energy expenditure. Because
weight loss by other means is reported to be associated with
a fall in basal metabolic rate, the failure of decline in energy
expenditure in these subjects is likely, in itself, be significant.

Leptin administration permitted the full progression of ap-
propriately timed pubertal development but did not appear to
cause precocious activation of the pubertal process in younger
children (22). Free T4 levels, although being in the normal range
before treatment, consistently showed an increase at the earliest
posttreatment time point and subsequently stabilized at that
new state (22). These findings are consistent with evidence from
animal models that leptin profoundly influences TRH release
from the hypothalamus (30–32).

Weight loss continued in all subjects throughout the trial,
albeit with some refractory periods, which were overcome by
increases in leptin dose. The UK families all carry the �G133
frameshift mutation, and thus wild-type leptin is a novel
antigen to them. Unsurprisingly, all subjects developed an-
tileptin antibodies after 6 wk of leptin therapy, which ham-
pered the interpretation of serum leptin levels and in some
cases were capable of neutralizing leptin in a bioassay (22).
The fluctuating nature of the antibodies may reflect the com-
plicating factor that leptin deficiency is itself an immunode-
ficient state and that leptin administration leads to a switch
from the secretion of predominantly Th2 to Th1 cytokines
(33), which may directly influence antibody production. This
may explain refractory periods during therapy in some sub-
jects when weight was gained despite continuing treatment.
Thus far, in all cases we have been able to regain control of
weight by increasing the delivered dose of leptin.

Although congenital leptin deficiency is rare, the response
to leptin administration in these patients has provided an
important proof of principle and highlighted some of the
biological functions of leptin in humans. Our studies suggest
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that leptin may be involved in dynamic changes in energy
expenditure and thyroid function. Furthermore, in a recent
study of leptin-sufficient subjects, administration of twice-
daily recombinant human leptin prevented the fall in energy
expenditure and thyroid hormones seen after 10% weight
loss (34). Thus, the weight-reduced state may be considered
a state of relative leptin deficiency associated with subtle
changes in energy expenditure and thyroid function.

Leptin receptor deficiency

In a consanguineous family of Kabilian origin, three severely
obese subjects were found to be homozygous for a mutation
that truncates the leptin receptor before the transmembrane
domain (35). Leptin receptor-deficient subjects were born of
normal birth weight, exhibited rapid weight gain in the first few

months of life, with severe hyperphagia and aggressive behav-
ior when denied food. Basal temperature and resting metabolic
rate were normal, cortisol levels were in the normal range and
all subjects were normoglycaemic with elevated plasma insu-
lins as seen in leptin-deficient subjects. In contrast, the presence
of mild growth retardation in early childhood with impaired
basal and stimulated GH secretion and decreased IGF-1 and
IGF binding protein 3 levels, and evidence of central hypothy-
roidism in these subjects, suggest that loss of the leptin receptor
may result in a more diverse phenotype than loss of its ligand
leptin.

Proopiomelanocortin (POMC)

The first-order neuronal targets of leptin action in the brain
are catabolic POMC and anabolic neuropeptide Y/agouti-

FIG. 1. Clinical response to leptin administration in congenital leptin deficiency
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related protein neurons (36–38). These reside in the hypo-
thalamic arcuate nucleus, where the signaling isoform of the
leptin receptor is highly expressed. POMC is sequentially
cleaved by prohormone convertases to yield peptides in-
cluding �-MSH that have been shown to play a role in feed-
ing behavior. Forty percent of POMC neurons in the arcuate
nucleus express the mRNA for the long form of the leptin
receptor and POMC expression is regulated positively by
leptin (39). There is clear evidence in rodents that �-MSH, a
melanocortin peptide produced from POMC, acts as a sup-
pressor of feeding behavior, probably through the MC4R
(reviewed in Ref. 40). Targeted disruption of MC4R in ro-
dents leads to obesity, severe hyperinsulinaemia, and in-
creased linear growth; heterozygotes have an intermediate
phenotype compared with homozygotes and wild-type
mice (16).

The first evidence for the involvement of POMC-derived
peptides in human energy homeostasis came from the de-
scription of two children harboring complete loss of function
mutations in the POMC gene (41). The affected children
presented with hypocortisolaemia early in life and had un-
detectable levels of plasma cortisol and ACTH, consistent
with isolated ACTH deficiency. Interestingly, both probands
had very pale skin and red hair, developed hyperphagia, and
became severely obese. In these two probands, the failure of
adrenal steroidogenesis was a consequence of the lack of
ACTH signaling through the adrenal MC2R, whereas the red
hair and pale skin were due to the lack of �-MSH induced
activation of the MC1R in skin melanocytes. Hyperphagia
and weight gain is likely to be the result of reduced hypo-
thalamic melanocortinergic signaling, presumably through
the MC4R. Recently, we identified a heterozygous missense
mutation (Arg236Gly) in POMC that disrupts the dibasic
amino acid processing site motif between �-MSH and �-
endorphin (42). In a pooled analysis of published data (42–
44), mutations disrupting this site were found in 0.9% of
children with severe early-onset obesity and 0.2% of normal
weight subjects. Functional studies demonstrated that the
mutation completely prevents the processing between
�-MSH and �-endorphin, resulting in an aberrant �-MSH/
�-endorphin fusion peptide. In in vitro studies, this fusion
protein bound to the MC4R with an affinity identical to that
of �- and �-MSH but had a markedly reduced ability to
activate the receptor. These results suggested that mutations
at ARG236 may confer an inherited susceptibility to obesity
through a novel mechanism whereby the production of an
aberrant fusion protein has the capacity to interfere with
central melanocortinergic signaling, thus predisposing to
obesity in certain individuals.

Prohormone Convertase (PC)1

Further evidence for the role of the melanocortin system
in the regulation of body weight in humans comes from the
description of a 47-yr-old woman with severe childhood
obesity, abnormal glucose homeostasis, and very low plasma
insulin but elevated levels of proinsulin, hypogonadotropic
hypogonadism, and hypocortisolaemia associated with ele-
vated levels of POMC. This subject was found to be a com-
pound heterozygote (i.e. heterozygous for two mutations,

each occurring on a different chromosome), for mutations in
prohormone convertase 1 (45), which cleaves prohormones
at pairs of basic amino acids, leaving C-terminal basic resi-
dues that are then excised by carboxypeptidase E. We have
recently identified a child with severe, early-onset obesity
who was a compound heterozygote for complete loss of
function mutations in PC1 (personal observations). Although
failure to cleave POMC is a likely mechanism for the obesity
in these patients, PC1 cleaves a number of other neuropep-
tides in the hypothalamus, such as glucagon-like peptide 1,
which may influence feeding behavior. The phenotype of
these subjects is somewhat similar to that seen in the car-
boxypeptidase E-deficient fat/fat mouse (14). However, in-
terestingly, mice that have been rendered totally deficient in
PC1 by gene targeting while showing biochemical abnor-
malities of prohormone processing very similar to our pa-
tients have some markedly different phenotypic features
(46). For example, PC1-deficient mice, in contrast to humans,
are short but not obese (46). Thus, it appears that normal PC1
function is more essential for the maintenance of normal
energy homeostasis in humans than in mice.

MC4R

Several groups have identified mutations in MC4R in
obese subjects from different ethnic groups (47–52). In a
recent study, we screened 500 subjects with severe, early-
onset obesity for mutations in MC4R and found that approx-
imately 6% of such subjects had mutations that were likely
to be causative of the condition (53, 54). The criteria for this
are important to state explicitly as there are several relatively
common but functionally irrelevant amino acid variants in
human MC4R. The mutations we identified are not conser-
vative in nature, are not found in control subjects from the
background population, and cosegregate with obesity in
families. MC4R deficiency represents the most commonly
known monogenic disorder presenting as morbid obesity
(53). The lower prevalence observed in some studies may be
explained by the differing prevalence in certain ethnic
groups but is most likely to reflect the later onset and reduced
severity of obesity of subjects in these studies. Whereas we
found a 100% penetrance of early-onset obesity in heterozy-
gous probands, others have described obligate carriers who
were not obese (48). Given the large number of potential
influences on body weight, it is not surprising that genetic
and environmental modifiers will have important effects in
some pedigrees. Notably, we have now seen six families in
whom the proband was a homozygote and in all of these, the
homozygotes were more obese than heterozygotes (53). In-
terestingly, in these families, some heterozygous carriers
were not obese. This may reflect ethnic-specific effects as all
these families were of Indo origin. Taking all of these ob-
servations together, codominance, with modulation of ex-
pressivity and penetrance of the phenotype, is the most ap-
propriate descriptor for the mode of inheritance, a finding
supported by the pattern of inheritance of obesity seen in
heterozygous and homozygous MC4R knockout mice (16).

At this time, we have examined over 70 MC4R mutant
carriers in our Clinical Research Facility. In addition to the
increase in fat mass, MC4R mutant subjects have a parallel
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increase in lean mass that is not seen in leptin deficiency (53).
Linear growth of these subjects is also striking with affected
children having a height sd score (SDS) of �2 compared with
population standards (mean height SDS of other obese chil-
dren in our cohort � �0.5). In addition, MC4R deficient
subjects have higher levels of fasting insulin than age-, sex-,
and BMI SDS-matched children (53). The acceleration in lin-
ear growth and the disproportionate early hyperinsulin-
aemia are consistent with the findings in the MC4R knockout
mouse.

Affected subjects are objectively hyperphagic, but not as
severely as those with leptin deficiency. Of particular note is
the finding that severity of receptor dysfunction demon-
strated in in vitro assays predicts the amount of food ingested
at a test meal by the subject harboring that mutation (53). One
notable feature of this syndrome is the finding that the se-
verity of many of the phenotypic features appears to partially
ameliorate with time. Thus, obese adult mutation carriers
report less intense hunger and are less hyperinsulinaemic
than are children carrying the same mutation (personal ob-
servations). We have studied the signaling property of many
of these mutant receptors in detail, and the information
gleaned from those studies should help advance knowledge
of structure/function relationship within the receptor. Im-
portantly, we have been unable to demonstrate any evidence
for dominant negativity associated with these mutants, sug-
gesting that MC4R mutations are more likely to result in a
phenotype through haploinsufficiency (54).

Polygenic Obesity

The genetic determinants of interindividual variation in
body fat mass are likely to be multiple and interacting, with
each single variant producing only a moderate effect. Be-
cause of this complexity, the search for genes predisposing
to common obesity has been a challenging undertaking.

Results from reported genome-wide linkage studies that
have examined obesity and/or related intermediate traits
have identified several loci that show positive evidence for
linkage with a LOD score of at least 2.6 (55). Only a single
locus has been highlighted in more than one of the genome-
wide scans reported to date. In two studies, one of extended,
Mexican-American pedigrees (56) and the other of French
sibling-pairs (57), significant linkage of serum leptin levels to
chromosome 2p21 was found. In the Mexican-American
study, suggestive evidence of linkage of fat mass to 2p21 was
reported, whereas in the French study no hint of linkage to
BMI was identified. The potential importance of this locus is
supported by a study of African-Americans, which con-
firmed linkage with serum leptin levels in this population
(58). This region of human chromosome 2 includes the
POMC gene, in which loss-of-function mutations have been
demonstrated as rare Mendelian causes of obesity in
humans. Of note, POMC mutations affecting the �-MSH/
�-endorphin processing site have been reported in around
0.8% of obese children and 0.2% controls, considering four
different published studies (42). While these relatively low
prevalence variants could not explain linkage results, they do
provide yet more biological support that subtle alterations in
POMC could influence body fat mass.

To some, the apparently slow progress in polygenics sug-
gests that this approach will not ultimately bear fruit. The
recent striking success in inflammatory bowel disease should
be a powerful rebuttal to the skeptics (59). In our view, it is
only a matter of time (and unfortunately money!) before the
combination of linkage and large-scale association studies in
multiple ethnic groups begins to reliably uncover the genetic
substrate for common forms of obesity.

Conclusions

As a result of the studies in human genetic obesity that we
have described, considerable progress has been made.
Firstly, we now know, beyond any doubt, that humans can
become severely obese directly as a result of genetic disrup-
tion of a single element of a homeostatic system regulating
energy balance. Secondly, we know that those critical reg-
ulatory molecules are as important for human energy bal-
ance as they are in lower species. Thirdly, it is notable that
all of the known genetic defects resulting in severe human
obesity do so largely through disruption of the normal con-
trols of ingestive behavior. A further illustration of the po-
tency and potential importance of these central mechanisms
is the clear correlation between a particular MC4R mutation
on in vitro signaling and the amount of food ingested at a test
meal (53). Finally, and most importantly, the paradigm of
leptin deficiency illustrates how the identification of genet-
ically defined subtypes among the obese can lead to the
institution of highly effective and life-saving therapy (22).
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